Efficient posterior sampling for high-dimensional imbalanced logistic regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Imbalanced Logistic Regression

In binary classification problems it is common for the two classes to be imbalanced: one case is very rare compared to the other. In this paper we consider the infinitely imbalanced case where one class has a finite sample size and the other class’s sample size grows without bound. For logistic regression, the infinitely imbalanced case often has a useful solution. Under mild conditions, the in...

متن کامل

High-dimensional classification by sparse logistic regression

We consider high-dimensional binary classification by sparse logistic regression. We propose a model/feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the non-asymptotic bounds for the resulting misclassification excess risk. The bounds can be reduced under the additional low-noise condition. The proposed complexity penalty ...

متن کامل

Efficient High-Dimensional Importance Sampling

The paper describes a simple, generic and yet highly accurate Efficient Importance Sampling (EIS) Monte Carlo (MC) procedure for the evaluation of high-dimensional numerical integrals. EIS is based upon a sequence of auxiliary weighted regressions which actually are linear under appropriate conditions. It can be used to evaluate likelihood functions and byproducts thereof, such as ML estimators...

متن کامل

A Modern Maximum-Likelihood Theory for High-dimensional Logistic Regression

Every student in statistics or data science learns early on that when the sample size n largely exceeds the number p of variables, fitting a logistic model produces estimates that are approximately unbiased. Every student also learns that there are formulas to predict the variability of these estimates which are used for the purpose of statistical inference; for instance, to produce p-values fo...

متن کامل

Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data

Imaging neuroscience links human behavior to aspects of brain biology in everincreasing datasets. Existing neuroimaging methods typically perform either discovery of unknown neural structure or testing of neural structure associated with mental tasks. However, testing hypotheses on the neural correlates underlying larger sets of mental tasks necessitates adequate representations for the observa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2020

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/asaa035